skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Morrisett, Greg"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many proofs of interactive cryptographic protocols (e.g., as in Universal Composability) operate by proving the protocol at hand to be observationally equivalent to an idealized specification. While pervasive, formal tool support for observational equivalence of cryptographic protocols is still a nascent area of research. Current mechanization efforts tend to either focus on diff-equivalence, which establishes observational equivalence between protocols with identical control structures, or require an explicit witness for the observational equivalence in the form of a bisimulation relation. Our goal is to simplify proofs for cryptographic protocols by introducing a core calculus, IPDL, for cryptographic observational equivalences. Via IPDL, we aim to address a number of theoretical issues for cryptographic proofs in a simple manner, including probabilistic behaviors, distributed message-passing, and resource-bounded adversaries and simulators. We demonstrate IPDL on a number of case studies, including a distributed coin toss protocol, Oblivious Transfer, and the GMW multi-party computation protocol. All proofs of case studies are mechanized via an embedding of IPDL into the Coq proof assistant. 
    more » « less
  2. Dillig, Isil; Jhala, Ranjit (Ed.)
    We present Leapfrog, a Coq-based framework for verifying equivalence of network protocol parsers. Our approach is based on an automata model of P4 parsers, and an algorithm for symbolically computing a compact representation of a bisimulation, using "leaps." Proofs are powered by a certified compilation chain from first-order entailments to low-level bitvector verification conditions, which are discharged using off-the-shelf SMT solvers. As a result, parser equivalence proofs in Leapfrog are fully automatic and push-button. We mechanically prove the core metatheory that underpins our approach, including the key transformations and several optimizations. We evaluate Leapfrog on a range of practical case studies, all of which require minimal configuration and no manual proof. Our largest case study uses Leapfrog to perform translation validation for a third-party compiler from automata to hardware pipelines. Overall, Leapfrog represents a step towards a world where all parsers for critical network infrastructure are verified. It also suggests directions for follow-on efforts, such as verifying relational properties involving security. 
    more » « less